حل معادلات دیفرانسیل معمولی در متلب
معادلات دیفرانسیل معمولی به آندسته از معادلات دیفرانسیل اطلاق می شود که تمامی متغیرهای وابسته (به عنوان مثال x، y و z ) تنها تابعی از یک متغیر مستقل (برای مثال t) می باشند. مثال آشنا در این مورد میتواند معادله نوسانگر هارمونیک باشد که در آن مکان نوسانگر تنها تابعی از زمان است. در مقابل معادله دیفرانسیل معمولی معادلات دیفرانسیل جزیی قرار می گیرند که نمونه بسیار آشنای آن معادله شرودینگر است که در آن تابع موج (متغیر وابسته) تابعی از مختصات مکانی و زمان (یعنی متغیرهای مستقل ) می باشد.
ابتدا به حل مسایل مقدار اولیه (IVP) با معرفی سه روش اویلر (Euler’s method)، رانگ کوتا (Runge–Kutta method) و تابع آماده در متلب بانام ode45 می پردازیم.
1- روش اویلر
این ساده ترین روش است. با استفاده از تقریب مشتق عددی پیشرو الگوریتم تکرار بسادگی بدست می آید :
dy/dt+5y=6 , y(t=0)=2که در آن h طول گام است. کافست با توجه به معادله دیفرانسیل تابع f(x,t) مشخص گردد و در رابطه تکرار بالا جایگذاری شود. مثال ساده زیر را در نظر بگیرید.
با توجه به معادله بالا خواهیم داشت : f(x,t)=dy/dt=6-5y
بنابراین رابطه تکرار بصورت زیر خواهد بود،
نهایتا برنامه کوتاه زیر را میتوان نوشت :
clc,clear all
h=.01;
t0=0;
tf=2;
t=t0:h:tf;
y(1)=2;
N=length(t);
for i=1:N-1
y(i+1)=y(i)+h*(6-5*y(i));
end
plot(t,y)
باید توجه داشته باشیم که هر سه روش بکار گرفته در حل مسایل مقدار اولیه مبتنی بر حل معادله دیفرانسیل مرتبه یک می باشند در حالیکه بسیاری از معادلات دیفرانسیل مهم در فیزیک مرتبه دو هستند. در چنین مواردی با استفاده از تغییر متغیر هر معادله دیفرانسیل مرتبه دو به دو معادله دیفرانسیل مرتبه یک شکافته می شود و هر کدام از این دو معادله بصورت جداگانه با توجه به شرایط اولیه با استفاده از روش اویلر حل میشود. بعنوان مثال :
مقاله متلب,مطلب,متلب,مقاله برق,مقاله قدرت,مقاله مطلب,مقاله سیمولینک,دانلود متلب,دانلود مقاله متلب,مقالهmatlab ,آموزش متلب,مطلب,متلب,آموزش برق,آموزش قدرت,آموزش مطلب,آموزش سیمولینک,دانلود متلب,دانلود آموزش متلب,آموزشmatlab ,پروژه متلب,مطلب,متلب,پروژه برق,پروژه قدرت,پروژه مطلب,پروژه سیمولینک,دانلود متلب,دانلود پروژه متلب,پروژهmatlab ,