موضوع : فواصل فازی درشبكه هاي توزيع برق
شبكه هاي توزيع در اكثر كشورهاي در حال توسعه و جهان سوم با استفاده از هادي هاي لخت اجرا مي شوند. اين در حالي است كه مصرف كنندگان انرژي الكتريكي در كشورهاي پيشرفته بويژه در طي چند دهه اخير شاهد روند رو به رشد استفاده از انواع خطوط هوائي عايق شده در شبكه هاي توزيع هوايي مي باشند.
رايج ترين انواع خطوط هوايي عايق شده در شبكه هاي توزيع هوايي عبارتند از :
1-هادي روكش دار Covered Conductor ( CC )
2-هادي با روكش ضخيم Covered Conductor Thick ( CCT )
3-كابل باندل هوايي ( كابل خودنگهدار Self-suppporting Cable ) در دو نوع با پوشش فلزي و با پوشش غيرفلزي
( يا به اختصارABC ) Metallic/Non-Metallic Screened Aerial BundlledCable ( M/NMSABC )
4-كابل هوايي فاصله دار Aerial Spacer Cable ( ASC )
از بين موارد فوق CC و CCT بسيار مشابه مي باشند. هر دوي آنها داراي هادي هاي مجزا هستند كه با عايق پلي اتيلن كراس لينك Cross LinkedPolyethlene ( XLPE ) پوشيده شده اند. تفاوت اساسي CCT با CC اين است كه در نوع CCT ضخامت عايق ، متناسب با سطح ولتاژ و سايز هادي تغيير مي كند و همچنين داراي روكش خارجي از جنس پلي اتيلن سنگين ( HDPE ) High Density Polyethylene مي باشد. نوع CC صرفاً در مقابل برخوردهاي اتفاقي و كوتاه مدت دوفاز به هم يا فاز به زمين استقامت الكتريكي نشان مي دهد در حاليكه CCT مي تواند در مقابل تماس هاي طولاني مدت دوفاز به هم يا يك فاز به زمين استقامت عايقي مناسب داشته باشد.
كابل باندل هوايي از سه فاز مجزاي عايق شده و يك هادي لخت از جنس آلومينيوم آلياژي ( وگاهي يك هادي اضافي زمين ) تشكيل مي شود. بر روي فازهاي عايق شده با XLPE ، يك پوشش هادي جهت شكل دهي ميدان الكتريكي كشيده شده است. و نهايتاً با يك نوار عايق و يك لايه HDPE ساختار اساسي كابل هوايي شكل مي گيرد. در كابل هاي فوق ، يك لايه نيمه هادي رشته هادي هاي تابيده شده و عايق را در بر مي گيرد. رشته هاي تابيده شده مياني از جنس فولاد يا آلومينيوم آلياژي بوده و جهت افزايش مقاومت مكانيكي كابل هوايي مي باشد. كابل هاي NMSABC ( با پوشش غير فلزي ) از نظر ساختار مشابه كابل هاي MSABC ( با پوشش فلزي ) مي باشند اما فاقد پوشش هادي شكل دهنده ميدان هستند.
در خطوط با كابل هوايي فاصله دار از كابل هاي هوايي كه عموماً دو پوشش عايقي و روكشي دارند استفاده مي شود. لايه داخلي از پلي اتيلن كراس لينك ( XLPE ) و لايه خارجي از پلي اتيلن مشكي يا خاكستري مقاوم در مقابل ترك خوردگي با چگالي زياد و مقاوم در برابر سائيدگي تشكيل مي شود. در ضمن لايه نازكي از نيمه هادي ، هادي هاي تابيده شده و عايق را در بر گرفته است. علاوه بر لايه هاي مذكور ، در ولتاژهاي بالاتر از 15 كيلوولت از يك لايه محافظ ديگر جهت جلوگيري از ترك خوردگي لايه آخر نيز ممكن است استفاده شده باشد. كابل هاي مذكور توسط نگهدارنده هاي مخصوص كه عموماً از جنس پلي اتيلن مي باشند دور از هم نگهداشته مي شوند.
به منظور مقايسه انواع كابل ها و هادي هاي روكش دار فوق بايد توجه داشت كه كابل هاي هوايي فاصله دار نيازمند استفاده از يراق آلات ، آموزش هاي جديد كادر فني و صرف هزينه هاي بيشتر هستند. اين موارد موجب مي گردد استفاده از اين خطوط در اولويتهاي مقادير جريان نامي و جريان عيب آنها كمتر از NMSABC مي باشد. كابل هاي NMSABC نيز گرانتر از انواع CC و CCT بوده و در ضمن انجام عمليات خط گرم در مورد آنها بسيار دشوارتر مي باشد. بدين ترتيب از بين انواع چهارگانه خطوط هوايي عايق دار توزيع ، صرفاً دو نوع CC و CCT مورد توجه بيشتر قرار گرفته است. البته خطوط CCT گرانتر از نوع CC مي باشد و به جزء در مناطق پر دذرخت يا طوفان خيز ، استفاده از خطوط CC به جهت اقتصادي بودن توصيه مي شود. به همين جهت اكثر خطوط هوايي عايق دار در كشورهاي پيشرفته از نوع هادي هاي روكش دار CC مي باشند. هادي روكش دار CoveredConductors
جنس هادي در انواع مختلف هادي هاي روكش دار شبكه هاي توزيع از نوع آلومينيوم ، آلومينيوم آلياژي و يا آلومينيوم با مغز فولاد ( ACSR ) مي باشد ( در شبكه هاي فشار ضعيف از هادي هاي مسي نيز استفاده شده است ). با وجود اينكه آلومينيوم به دليل وزن سبك به عنوان يك هادي مناسب به طور وسيعي در هادي هاي روكش دار مورد استفاده قرار مي گيرد ولي عواملي همچون افزايش استقامت مكانيكي و ممانعت از پارگي و خوردگي منجر به استفاده از آلومينيوم آلياژي در اين خصوص شده است. شكل دهي رشته هادي ها نيز يكي از مواردي است كه منجر به كاهش تأثيرات نامطلوب عوامل فيزيكي محيط بر روي هادي ها و نهايتاً خطوط مي گردد. استفاده از رشنه هادي هاي شكل يافته به صورت فشرده و توليد هادي هاي كمپكت روكش دار از ديگر مواردي است كه ضمن بهبود شرايط مكانيكي هادي هاي فوق ، موجب سهولت توزيع حرارت در آنها شده و كاهش مقاومت الكتريكي را نيز به همراه دارد.
هاد هاي روكش دار داراي يك روكش عايقي با ضخامت معيني ( به طور متوسط 3 ميلي متر ) براي تمام رده هاي شبكه فشار متوسط تا 19/33 كيلوولت مي باشند. پس از ساخت هادي و كمپكت نمودن آن ابتدا يك لايه نسبتاً نازك از جنس نيمه هادي بر روي هادي كشيده شده و سپس با ضخامت معيني از مواد عايقي XPLE ( پلي اتيلن كراسلينك ) پوشيده مي شود. اين هادي ها در ولتاژ كاري 20 كيلوولت نسبت به برخوردهاي موردي بين فازها و فاز به زمين نقش عايقي را داشته و از ايجاد اتصالي ها ممانعت به عمل مي آورند. عايق اين نوع هادي ها غالباً به رنگ مشكي بوده و در مقابل اشعه ماوراء بنفش خورشيدي ( UV ) از مقاومت لازم برخوردار است. لايه نيمه هادي پوششي بر روي سطوح هادي ها در ولتاژهاي 20 كيلوولت و بالاتر نقش شكل دهي ميدان را دارد. لازم به ذكر است اخيراً هادي هاي روكش دار در بعضي از شركت هاي داخلي در حال طي مراحل توليد مي باشد. ويژگي هاي الكتريكي خطوط هوايي روكش دار
وجود پوشش عايقي در هادي هاي روكش دار موجب ايجاد ويژگي هاي الكتريكي خاص براي اين نوع از هادي ها مي گردد. مهمترين اين موارد عبارتند از :
1-حفاظت در مقابل صاعقه
2-تخليه هاي جزئي
3-تغيير مقادير اندوكتانس و كاپاسيتانس خط
4-جريان شارژ
وقتی هدف، بهینهسازی ابعاد و وزن دکلهای خطوط انتقال نیرو باشد، طبیعی استعوامل مختلفی از جمله مشخصه هادیها، آرایش فازها و فاصله آنها تا دکلها در این امردخالت دارد.
در این نوشتار ضمن بررسی عوامل مختلف در محاسبه فواصل فازی، تأثیر آنها درطراحی دکلهای موجود نیز مورد بحث و بررسی قرار گرفته است.
گرچه نقش هر یک از عوامل جوی و محیطی، بسیار مهم است، اما فاصلههادیها تا بدنه یا بازوی برجها، نقش مؤثرتری را در طراحی ابعاد و وزن دکلها یا برجهایخطوط انتقال نیرو دارد.
همچنین ابعاد دکلهایطراحی شده در کشور ایران با چند نمونه از دکلهای مربوط به خطوط انتقال نصب شده درچند کشور خارجی مقایسه شده است. نتایج این بررسیها نشان میدهد در طراحی دکلهای خطوط انتقال نیرو، فواصل فازها از بدنه دکلها و از یکدیگر، بیشتر از حد مورد نیازاست که این امر نشانگر در نظر گرفتن ضریب اطمینان بالا بوده که موجب افزایش وزنآنها و در نتیجه قیمت خطوط انتقال نیرو میشود.
گرچه ابعاد و وزن دکلها به عوامل بسیارمتعددی از جمله فاصله اسپن، سرعت و زاویهوزش باد، ضخامت یخ، وزن و قطر هادی وعوامل دیگر وابسته است اما در یک شرایطمعین، فواصل فازها یکی از عوامل مهم ومؤثر در طراحی دکلهای خطوط انتقال نیرواست. با افزایش فاصله هادیها از بدنه یا بازوی دکلها، نیروی تحمیلی بر آنها تغییر میکند که این امر سبب افزایش ابعاد، وزن وقیمت آنها میشود.
توجه به این بخش از طراحی، میتواند عامل مؤثری در کاهشهزینههای مربوط به ساخت دکلها و در نتیجهسرمایهگذاری خطوط انتقال نیرو باشد .بررسی فواصل فازی در مراجع مختلفنشان میدهد با وجود مدلها و روابط متعددی که برای محاسبه فواصل فازی ارایه شده است، در عمل فواصل فازها حتی در شرایط محیطی یکسان، برابر نیست که وجود دکلهای متنوع با ابعاد و وزن مختلف درشبکههای برقرسانی ایران مؤید این مطلب است. لذا با توجه به اهمیت فواصل فازها وجایگذاری هادیها در طراحی دکلها، پهنای باند عبور و در نتیجه سرمایهگذاری خطوط انتقال نیرو، در این نوشتار مورد بحث و بررسیقرار میگیرد.
معیار انتخاب فواصل فازی
در خطوط انتقال نیرو فاصله فازها تا بدنهبرجها یا فاصله فاز تا فاز به عوامل متعددی ازجمله اضافه ولتاژها، شرایط جوی و محیطی وسایر مشخصات فنی خطوط، وابسته است امابه هر حال دامنه تغییرات آن قابل محاسبهاست. از طرفی با توجه به این که ممکن است اضافه ولتاژها یا پدیدههای جوی رخ دهد، لذافاصله فازها میتواند با پذیرش احتمال کم یازیاد برای وقوع جرقه در فواصل هوایی،افزایش یا کاهش یابد. برای روشن شدنمطلب، به تأثیرگذاری عوامل مؤثر و مختلفدر این زمینه به طور اختصار اشاره میشود.
الف) عوامل موثر در فواصل فازی
در محاسبه حداقل فاصله فازها تا بدنهدکلها عوامل متعددی دخالت دارد که از جملهمیتوان به این موارد اشاره کرد:
– ولتاژ خط انتقال
– وزن و قطر هادیها
– قطر یخ روی هادیها
– درجه حرارت هادیها
– سرعت و زاویه وزش باد
– شرایط جوی و محیطی مسیر
– فلش هادیها
– فاصله پایهها
– قابلیت اطمینان یا درصد ریسکپذیری.
این عوامل عمدتا در نزدیکسازیفاصله فازها به بدنه دکلها در شرایط وزش باددخالت دارند. اما در هر شرایطی، حداقلفاصله فازها تا بدنه دکلها در هر جهت نباید ازرقمی که از طریق اضافه ولتاژهای ناشی از کلیدزنی یا صاعقه به وجود میآیند کمترباشد. شایان ذکر است که در برخی از مراجع،سرعت باد ماکزیمم در زمان وقوع حداکثراضافه ولتاژ، منظور نمیشود.
ب) حداقل فاصله افقی هادی تا دکل
در جایگذاری هادیها در روی دکلها بایددقت شود که فاصله هادیها با بدنه یا بازویدکلها در هیچ قسمت، از مقدار مشخصی،کمتر نباشد این فاصله تابعی از مقدار اضافه ولتاژهای ناشی از صاعقه و کلیدزنی و درصد ریسکپذیری است. برای محاسبه حداقلفاصله هوایی یا فاصله هادی تا بدنه،میتوان از این روابط استفاده کرد:
رابطه (2) نیز حداقل فاصله هوایی از دیدگاه اضافه ولتاژ ناشی از صاعقه را نشان میدهد:
در این رابطه داریم: LS – حداقل فاصله هوایی بر مبنای اضافهولتاژ کلیدزنی به متر
VS – اضافه ولتاژ ناشی از کلیدزنی بهکیلوولت
LL – حداقل فاصله هوایی بر مبنای اضافهولتاژ صاعقه به متر
VL – اضافه ولتاژ ناشی از صاعقه به کیلوولت
برای محاسبه حداقل فاصله هوایی درهر سطح از ولتاژ لازم است، با توجه به مقادیراضافه ولتاژهای ناشی از کلیدزنی و صاعقه،حداقل فاصله هوایی محاسبه شود.
ضمنا برای سهولت مقایسه و محاسبه،حداقل فاصله هوایی مجاز فازها تا بدنهدکلها با توجه به روابط (1 و 2) و برحسبمقادیر مختلفی از اضافه ولتاژهای صاعقه وکلیدزنی نیز محاسبه شده است. حداقل فاصله هوایی، تنها به مقدار ولتاژ بستگی ندارد، بلکهتابعی از نوع اضافه ولتاژ نیز است. به عبارتدیگر این مطلب نشان میدهد که ولتاژشکست هوا ضمن این که به قدر مطلق ولتاژبستگی دارد، به شکل موج آن نیزوابسته استبه عبارت دیگر برای مقادیر یکسانی از اضافه ولتاژهای صاعقه و کلیدزنی، حداقل فاصلههوایی مجاز یا فواصل فازها از یکدیگر (یا بابدنه دکلها) برای اضافه ولتاژ کلیدزنی بیشتراز اضافه ولتاژ ناشی از صاعقه است.
فاصله فاز تا بدنه دکل
در صورتی که زنجیره مقرهها در اثر وزشباد دچار نوسان نشود، حداقل فاصله فاز تا بدنه دکلها را میتوان معادل L در نظر گرفتکه مقدار آن برابر LL یاLS (هر کدام بزرگترباشد) است. اما در عمل وزش باد سبب انحراف زنجیره مقرهها به سمت دکلهامیشود که این اقدام موجب نزدیک شدنفازها به بدنه یا بازوی دکلها میشود. لذا اگر هدف، تعیین محل مناسب برای نصبزنجیره مقرهها باشد باید این مطلب مدنظرقرار گیرد.
شمای کلی بخشی از دکل راهمراه با زنجیره مقرهها نشان میدهد. در اینشکل fزاویه انحراف زنجیره مقرهها، dhمیزان پیشروی افقی هادیها به سمت دکل و dvفاصله هادی تا بازوی دکل در حالتانحراف زنجیره مقرهها و Lin طول زنجیرهمقرههاست. با توجه به شکل فوق میزان پیشروی زنجیره مقرهها به سمت بدنه دکل رامیتوان از رابطه 3به دست آورد.
با توجه مقدار dh حداقل فاصله فاز تا بدنه(D) به دست میآید.
وزش باد علاوه بر این که فاصله افقی هادیهاتا دکل را کاهش میدهد، سبب کاهشفاصله عمودی هادیها تا بازوی دکل (dv) نیزمیشود. لذا در انتخاب طول زنجیره مقرههاباید دقت شود که هیچ وقت مقدار dv از Lکمتر انتخاب نشود. اما اگر مقدار dv از حدمجاز کاهش یابد طول زنجیره مقرهها باید باتوجه به رابطه (6) اصلاح شود:
با جایگذاری مقدار معادل Lin در رابطه (5)مقدار D به صورت روابط (7) و (8) محاسبه میشود.
زاویه انحراف زنجیره مقرهها را میتوان ازرابطه (9) به دست آورد. در این رابطه Vسرعت وزش باد برحسب متر بر ثانیه، dقطرهادی بر حسب متر، w وزن یک متر از طولهادی برحسب کیلوگرم و Sh و Svاسپنهای بادو وزن است.
همان طور که ملاحظه میشود فاصله هادیهاتا بدنه دکلها به سرعت باد، شرایط آب وهوایی منطقه، نوع هادی و فاصله دکلهاوابسته است. به عبارت دیگر هر چه زاویهانحراف زنجیره مقرهها بیشتر باشد فاصله فازها باید زیادتر انتخاب شود. tanf در محدوده 4/0 تا 6/0 تغییر میکند، لذا در این حالتها مقدار Kدرمحدوده 4/1 تا 6/1تغییر میکند (اگر زنجیرهمقرهها به صورت V شکل نصب شود K حدود1/1 تا 2/1 خواهد بود) لذا با توجه به مقادیراضافه ولتاژهای مندرج در جدول (1) و در نظرگرفتن K مساوی 1/1 و 1/4 برای آرایش Vو I مقرهها، حداقل فاصله هادیها تا بدنهدکلها (D) محاسبه و نتیجه در جدول (3) درجشده است. در این محاسبات برای ولتاژ 400کیلوولت از مقدار ماکزیمم Ls و برای سایرسطوح ولتاژ از ارقام ماکزیمم LL استفاده شدهاست.
لازم به توضیح است که تنظیم فاصلههادیها در سر دکلها به معنی مناسب بودنفواصل فازی در خط انتقال نیست، بلکه بایدفاصله فازها در وسط پایهها نیز کنترل شود.چون ممکن است در اثر وزش باد، فواصل هادیها از حد مجاز کمتر شود. در چنینشرایطی، باید فاصله هادیها در سر دکلهابیشتر از ارقام محاسبه شده منظور شود تا در وسط پایهها مشکلی ایجاد نشود.
فواصل فازی
برای بررسی فواصل فازی متداول درخطوط انتقال نیروی کشور، مقادیر فواصلهوایی و فازی که از روش محاسباتی فوق بهدست آمده است با مقادیر مشابه آنها که درمراجع مختلف درج شده مورد مقایسه قرار میگیرد. در ادامه نوشتار مقادیر مربوط به اینعوامل ارزیابی میشود.
الف) فواصل فازها در دکلهای شبکهبرقرسانی کشور
بررسی دکلهای نصب شده در سطحشبکههای برقرسانی کشور، نشان میدهدکه ابعاد آنها دارای تفاوتهای محسوسی است.گرچه بخشی از این اختلافات مربوط بهشرایط آب و هوایی منطقه است، اما قسمتدیگر به ناهماهنگبودن معیارهای طراحی ازجمله انتخاب ضرایب اطمینان طراحیمرتبط میشود. جدول (4) دامنه تغییراتفواصل فازها در چند نمونه از دکلهای خطوطانتقال نیروی کشور را نشان میدهد.
ب) مقادیر واقعی در چند خط انتقالخارج از کشور
برای نتیجهگیری بهتر، وضعیت فاصلهفازی در چند نمونه از خطوط انتقال نیرو نصبشده در کشورهای اروپایی و آمریکایی که ازمراجع مختلف استخراج شده مورد مطالعه قرارگرفت. با توجه به بررسیهای انجام شده، فاصله هادیها تا بدنه دکلها محاسبه و نتیجهدر جدول (5) درج شد. همان طور که از اینجدول پیداست اختلاف محسوسی بین ارقام این جدول با دیگر مراجع، وجود دارد. گرچهبخشی از این اختلافات مربوط به شرایط آب وهوایی مسیر است اما عامل دیگر، تفاوت در بکارگیری معیارهای طراحی است.
ج) حداقل مجاز در NESC
از آن جا که هدف، مقایسه فواصل هواییمحاسبه شده در مراجع مختلف است، لذامقادیر توصیه شده توسط NESCنیز موردبررسی و مقایسه قرار میگیرد.
مقایسه فواصل فازی بررسیهای انجام شده در این نوشتارنشان میدهد روشهای بکار گرفته شده درمراجع مختلف برای محاسبه فواصل فازی،متفاوت بوده که این امر باعث بروز اختلافاتمحسوسی در مقادیر فاصله فازها تا بدنه دکلها شده است. در شرایطمتعارف، مقدار
این متن برگرفته از سایت مهندسی برق قدرت و شبکه های انتقال و توزیع مهندس هادی حداد خوزانی می باشد.
البته چون دراین مرجع ولتاژهای معادل سطوح ولتاژ استاندارد کشور وجود ندارد، لذا فواصل هواییولتاژهای نزدیک (سطوح ولتاژ 69 ، 138 و 230)، انتخاب و فواصل، با توجه بهسطوح ولتاژ کشور، اصلاح شده است. جدول(6) حداقل فاصله هوایی مجاز و فاصله هادیتا دکل را در چهار سطح ولتاژ استاندارد کشورایران نشان میدهد.
– حالت اول: نتایج محاسبات
– حالت دوم: استاندارد NESC
– حالت سوم: خطوط نصب شده در چند کشورخارجی
– حالت چهارم: خطوط نصب شده در شبکهبرقرسانی ایران .
گرچه بخشی از اختلاف ارقام موجود دراین جدول مربوط به شرایط محیطی است، امابه هر حال فواصل هادیها تا دکلهای خطوطنصب شده در کشور ایران از حد متعارف بیشتراست که باید مورد بازنگری و ارزیابی قرارگیرند.
با توجه به این که بهینهسازی ابعاد و وزندکلها یا برجهای خطوط انتقال نیرو بدونبکارگیری معیارهای مناسب در محاسبهفواصل فازی میسر نیست لذا باید این اقداممهم در طراحی خطوط انتقال نیرو بخصوص طراحی دکلها به طور جدی مورد توجه قرارگیرد. بدیهی است استانداردهای دکلهایخطوط انتقال نیرو بدون توجه به این مهم، نمیتواند از مطلوبیت کافی برخوردار باشد.
2-1-1-ساختمان يك خط انتقال نمونه
اكثر خطوط انتقال ، هوايي مي باشند زيرا خطوط زميني براي انتقال به فواصل زياد بسيار گران تمام مي شوند . هاديهاي خطوط هوايي به وسيله برج هاي مشبك فولادي ( دكل ) يا پايه هاي چوبي ، جهت عايق نمودن هاديها از زمين در هر نوع شرايط جوي و جلوگيري از تماس اتفاقي مي باشد . استفاده از پايه هاي بلند اين امكان را مي دهد تا از اسپان هاي بلند و در نتيجه تعداد پايه هاي كمتري استفاده كرد .
اندازه يا طول مقره بستگي به ولتاژ خط دارد . هرچه ولتاژ قويتر باشد بايستي طول زنجيره مقره بلندتر باشد . هادي ها معمولا از آلومينيوم رشته اي با هسته فولادي است . آلومينيوم هادي خوبي براي الكتريسيته است ، و هسته فولادي موجب مقاوم شدن هادي مي شود . يك هادي مقاوم وسبك را مي توان با فلش (شكم) كمتر در اسپان هاي بلند استفاده نمود .
3-1-1- ولتاژ خط انتقال
نيروي الكتريكي در نيروگاه ها 13800 ولت تا 24000 ولت توليد مي شود . يك ايستگاه ترانسفورماتور افزاينده بعد از نيروگاه ولتاژ را تقويت مي كند تا با بازده بالا انتقال يابد . ولتاژهاي توليدي در نيروگاه تا ولتاژهاي معمول خط انتقال يعني 123000 ولت ، 230000 ولت ، 400000 ولت ، 500000ولت و 765000 ولت افزايش مي يابد . به عنوان يك قاعدﮤ كلي ، اگر ولتاژ 2 برابر گردد انرژيي كه ميتوان انتقال داد بدون افزايش تلفات خط ، چهار برابر مي شود .
در خطوط فشار قوي ( EHV ) مانند مدارهاي 500 كيلو ولت از هادي هاي باندل كه 2 ، 3 يا 4 هادي به وسيله اسپيسر دمپر به يك ديگر متصل مي گردند استفاده مي شود باندل نمودن هادي ها باعث جلوگيري از مشكلات ولتاژ فشار قوي مي گردد . در هر صورت ظرفيت افزايش يافته هادي علاوه بر ولتاژ فشار قوي اجازه مي دهد يك خط 500 كيلو ولت تك مداره تا معادل 8 مدار 230 كيلو ولت انرژي حمل نمايد .
4-1-1- پست هاي سيستم انتقال
پايانه هاي خطوط انتقال در پست ها و سوئيچ ها ياردها ( محوطﮥ كليدها ) قرار دارند . پست هاي برق ، ايستگاه هاي تغيير ولتاژ هستند . ترانسفورماتورها ميتوانند به منظور انتقال مؤثر ولتاژ فشار قوي ، ولتاژ را افزايش و يا براي توضيع نيرو در جاده ها و خيابان ها ، ولتاژ را كاهش دهند .
تجهيزات به گونه اي طراحي شده كه ايستگاه بتواند در صورت خارج شدن قسمتي از مدار ، خط فوق توزيع مربوطه را تغذيه نمايد .
5-1-1- سوئيچ يارد (محوطه كليد ها )
سوئيچ ياردها در پايانه هاي خطوط انتقال قرار دارند . يك سوئيچ يارد شامل كليد هاي قطع كننده ( سكسيونر ها ) ، مدار شكن ها ( ديژنگتورها ) ، رله ها و سيستم هاي ارتباطي براي محافظت مدار مي باشد . سوئيچ يارد اين مكان را ايجاد مي كند كه برق از مدارهاي مختلف عبور كند و اطمينان حاصل شود كه حتي وقتي بعضي از قسمتهاي يك سيستم قدرت خراب مي شود مشتريان به طور مستمر سرويس دريافت دارند .
مدار هاي متعددي كه به داخل يك سوئيچ يارد وارد مي شود به وسيله يك مدار مشترك به نام باس يا شينه به يكديگر ارتباط مي يابند . اصطلاح باس از كلمه اومني باس به معني مجموعه اي از اشياء متعدد يا در اين حالت يك مجموعه اي از مدار ها متعدد است . باس بايستي بتواند جريان خطي زيادي را حمل نمايد بنابراين معمولا شامل هاديهاي خيلي بزرگ يا لوله مسي يا آلومينيومي بزرگ و سخت مي باشد . سوئيچ يارد معمولا در داخل همان محوطه محصور شدة ترانسفورماتور قرار دارد و قسمتي از پست را تشكيل مي دهد .
كليدهاي فشار قوي :
1- سكسيونرها : يكي از كليدهاي فشار قوي بوده كه به دو صورت قابل قطع زير بار و غير قابل قطع زير بار مي باشد . كه به صورت دستي كنترل شده و عمل قطع و وصل انجام مي شود .
2- اتوريكلوزرها : اين كليد براي محافظت مدار و يا شبكه هاي فشار متوسط و قوي استفاده مي شود كه بصورت اتوماتيك عمل مي كنند . عملكرد اين كليد به اين صورت است كه چنانچه در شبكه ما اتصال كوتاهي رخ دهد اين كليد بصورت اتوماتيك 3 يا 4 مرتبه عمل قطع و وصل را انجام مي دهد و چنانچه مشكل شبكه (اتصال كوتاه) برطرف شده باشد به حالت وصل مي ماند و اگر برطرف نشده باشد در قطع و وصل چهارمي ديگر وصل نمي شود .
3- ديژنگتورها : اين كليد به صورت قطع و وصل خودكار مي باشد و بيشتر براي محافظت تجهيزات فشار قوي استفاده مي شود .
4- سكشن آلايزرها : اين كليد عملكردش تقريبا همانند ريكلوزرها مي باشد كه در شبكه هاي شعاعي بعضاً هم حلقوي از اين نوع كليد استفاده مي شود ، كه وظيفه آن كنترل يك قسمت مخصوص است .
6-1-1- ارتباط بين پستها
اپراتور بايد وسايل اندازه گيري و آلارمها (هشداردهنده ها ) كه شرايط ايستگاهها و خطوط منطقه تحت كنترل را نشان مي دهد در اتاق كنترل بازبيني كند . اپراتور مي تواند خارج از نيروگاه و ايستگاه ، كليد ها را به طريق كنترل از راه دور باز و بسته نمايد . اين كنترل عاليه سيستم بستگي به سيستمهاي ارتباطي بين ايستگاهها (مركز ديسپاچينگ ) دارد .
براي انتقال اطلاعات و علائم از ايستگاهي به ايستگاه ديگر از خطوط تلفن ، كابل نوري ،سيستمهاي PLC ، سيستمهاي ماكروويو يا ماهواره اي استفاده مي شود . چون وجود ارتباط مداوم بسيار حياتي مي باشد ، معمولا بيش از يك سيستم ارتباطي در محل وجود دارد تا در صورت خرابي يك سيستم ، بتوان از سيستم ديگري استفاده نمود .
خطوط تلفن يك ارتباط عادي بين ايستگاه ها است . استفاده از كابل نوري در شيلدوايرا بر روي خطوط انتقال ، يك حالت ارتباطي معمول مي باشد .
سيستم plc از هاديهاي خط قدرت براي انتقال اطلاعات استفاده مي نماييم . علائم ارتباطي به وسيله دستگاهي كه شبيه به ترانسفورماتور ولتاژ است ولي در اصل يك ترانسفورماتور كوپلينگ ولتاژ خازني ( ccvt ) مي باشد ،به هاديهاي قدرت ارسال يا از آن دريافت مي شود . به منظور نگهداري علائم انتقالي در قسمتهاي مورد نظر خط قدرت ، تله هاي موج نصب مي گردد. تله موج كه شبيه به يك سيم پيچ استوانه اي بزرگ مي باشد از پيشروي علائم در خط جلوگيري مي نمايد .
ارتباطات ماكروويو بين ايستگاه ها نياز به برج (دكل) همراه با آنتن در هر ايستگاه دارد . آنتن هاي فرستنده و گيرنده ماكروويو نياز به يك ديد مستقيم و بدون وجود هيچ مانعي در بين آنها دارد . بايستي برج هاي ماكروويو در صورت امكان بر روي تپه ها به فاصله 60 تا 100 كيلومتر (35 تا 60 مايل ) نصب گردند تا علائم بين برجها مخابره شود .
7-1-1- استخرهاي قدرت الكتريكي
نيروگاه به وسيله خطوط انتقال در استخرهاي بزرگ منطقه اي يا شبكه هايي كه از مرز هاي شركت هاي برق مي گذرد به يكديگر مرتبط مي شوند . قدرت الكتريكي توسط اين شبكه ها به هر جايي كه نياز باشد ارسال مي گردد . بدين ترتيب اين انرژي مي تواند مثلا در فصل گرما براي تغذيه اوج بارهاي حرارتي به شمال كشور ارسال شود .
لوازم اندازه گيري در پايانه هاي خطوط يا پست هاي تبديل مقدار انرژي كه از مرزهاي سرويس دهي شركت ها عبور مي كند وهمچنين مبالغي كه بايستي بابت آنها پرداخت يا به حساب منظور شود را تعيين مي كنند . بعضي اوقاتيك شركت برق فقط انرژي رااز يك همسايه توليد كننده برق به همسايه ديگر انتقال مي دهد و هزينه اين انتقال (ترانزيت) را دريافت مي دارد .
8-1-1- خاموشي و ضعف ولت
خاموشي بزرگ در شمال شرقي ايالات متحده آمريكا و كانادا در نهم نوامبر 1965 ميلادي بوجود آمد . اشكال يك عنصر در استخر قدرت (شبكه) موجب شروع يك زنجيره واكنشي شد كه منجر به از دست رفتن بيشتر آن شبكه گرديد . از آن زمان پيشرفت طرح هاي حفاظتي آغاز و نصب تجهيزات حفاظتي خوب براي جدا نمودن نقاط معيوب صورت گرفت شركتهاي برق همواره با بهبود طرح هاي حفاظتي ، داراي فرايندهايي هستندكه در صورتي كه تقاضا (ديماند) مشتركين بيش از مقدار انرژي توليد شده سيستم باشد ، عملا ولتاژ شبكه را كاهش مي دهند ويا بار را از سيستم كم مي كنند .
وقتي تقاضاي مشتريان از استخر قدرت بيشتر از مقدار توليد شده يا تامين شده توسط خطوط انتقال باشد ، انداختن بار آخرين مرحله تصميم گيري خواهد بود. قبل از قطع بار ، بايستي ولتاژ شبكه را پايين آورد تا كل انرژي تحويل شده به مشتركين كاهش يابد .
ممكن است مشتركين (مشتريان برق) مشاهده كنند كه روشنايي آنها قدري كم نور شده و موتورهاي روشن ، گرمتر ميشوند .بعضي از شركت هاي برق خارج از كشور هر دو سال يكبار به وسيله كاهش ولتاژ سيستم آزمايشاتي را انجام مي دهند . ضعف ولت معمولا تنها توسط مشتركيني ملاحظه مي شود كه تقريبا كمتر از ولتاژ نرمال در مواقع معمول دريافت مي دارند .
اگر بعد از اينكه عملا ولتاژ سيستم كاهش يافت هنوز نتوان به اندازه كافي تقاضاي مشتركين را تامين كرد ، بايستي ابتدا بعضي از صنايع بزرگ را از مدار خارج كرد . معمولا اين صنايع قراردادي با شركت برق دارند كه اجازه ميدهد بارشان در مقابل نرخ بهتر يا فروش كمتر برق ، كاهش يابد .
در زمستان سرد غير عادي سال ميلادي 1994 – 1993 ، تامين برق مورد تقاضاي مشتركين در واشنگتن D.C بسيار مشكل شد و به جاي اجراي خاموشي گردشي (دوره اي) ، مقدار تقاضا يا مصرف مشتركين به وسيله بستن ساختمانهاي دولتي در سردترين روزها كاهش داده شد .
وقتي همه روشهاي ديگر براي كاهش بار با شكست مواجه مي شود بايستي بار الكتريكي عموم مردم به طور گردشي بر اساس زمان بندي واعلان قبلي كاهش يابد . كاهش بار به طور گردشي (نوبتي) باعث اعمال خاموشي در يك منطقه جغرافيايي معيني براي يك دوره زماني مشخص معمولا 30 تا 60 دقيقه مي شود .
نتیجه:
بررسیهای مقدماتی انجام شده در ایننوشتار نشان میدهد که معیارهای موجودبرای محاسبه فواصل فازی در کشور دارایضریب اطمینان بالایی است که این امر سببافزایش بیمورد ابعاد و وزن دکلهای خطوطانتقال نیرو میشود.
بررسی و مقایسه فواصل فازی ابعاددکلهای خطوط انتقال نیروی موجود در کشورایران با تعدادی از مراجع نشان میدهد که دربسیاری موارد امکان کاهش ابعاد آن، میسراست. از آن جا که مشخصات فنی دکلها مستقیما به فواصل فازها تا بدنه دکل ودرنتیجه به نیروهای تحمیلی بر آنها وابستهاست، به طور طبیعی بهینهسازی ابعاد و وزن دکلها بدون انتخاب معیار مناسب برای تعیینفواصل فازی میسر نیست.