تاریخچه ترانزیستور
ترانزیستور در سال 1947 در آزمایشگاه های بل هنگام تحقیق برای تقویت کننده های بهتر و یافتن جایگزینی بهتر برای رله های مکانیکی اختراع شد.لوله های خلاء، صوت و موسیقی را در نیمه اول قرن بیستم تقویت کرده بودنداما توان زیادی مصرف می کردند و سریعا می سوختند .
ترانزیستور چیست؟
ترانزیستور در سال 1947 در آزمایشگاه های بل هنگام تحقیق برای تقویت کننده های بهتر و یافتن جایگزینی بهتر برای رله های مکانیکی اختراع شد.لوله های خلاء، صوت و موسیقی را در نیمه اول قرن بیستم تقویت کرده بودنداما توان زیادی مصرف می کردند و سریعا می سوختند . شبکه های تلفن نیز به صد ها هزار رله مکانیکی برای اتصال مدارات به همدیگر نیاز داشتند تا شبکه بتواند سر پا بایستد و چون این رله های مکانیکی بودند لازم بود برای عملکرد مطلوب همیشه تمیز باشند .در نتیجه نگه داری و سرویس آنها مشکل و پر هزینه بود.
با ظهور ترانزیستور قیمت ها نسبت به زمان استفاده از لامپ خلاء شکسته شد و بهبودی زیادی در کیفیت شبکه های تلفن حاصل گردید.
ترانزیستور چگونه کار می کند؟
ترانزیستور کاربرد های زیادی دارد اما دو کاربرد پایه ای آن به عنوان سوئیچ و استفاده در مدولاسیون است که کاربرد دومی بیشتر به عنوان تقوت کننده مورد نظر است.
این دو کاربرد ترانزیستور را می توان اینگونه توضیح داد :
سوئیچ همان کلید است مثل کلید چراغ خواب اتاقتان .دارای دو حالت روشن و خاموش است با قرار دادن کلید در حالت روشن چراغ اتاقتان روشن می شود و با قراردادن کلید در حالت خاموش چراغ خاموش می شود . بله به همین سادگی ! کاربرد ترانزیستور هم به عنوان سوئیچ به همن صورت است.
اما کاربرد تقویت کنندگی آن را می توان بدین صورت توضیح داد :
چراغ خواب نور کمی دارد اما اگر بتوان این نور را چنان زیاد کرد که تمام اتاق را روشن کند آنوقت عمل تقویت کنندگی صورت گرفته است.
فرق بین سوئیچینگ به وسیله ترانزیستور و به وسیله کلید برق! سرعت بسیار زیاد ترانزیستور است که می توان گاهی آن را در مقایسه با کلید آنی در نظر گرفت(صد ها هزار برابر و شاید میلیونها بار سریعتر).و اینکه ترانزیستور را می توان به دیگر منابع الکترونیکی متصل کرد مثلا به میکروفن به منبع سیگنال و حتی به یک ترانزیستور دیگر ….
ترانزیستور از عناصری به نام نیمه هادی مانند سیلیکون و ژرمانیوم ساخته می شود نیمه هادی ها جریان الکتریسیته را نسبتا خوب( – اما نه به اندازه ای خوب که رسانا خوانده شوند مانند مس و آلومنیوم و تقریبا بد اما نه به اندازه ای که عایق نامگذاری شوند مانند شیشه) هدایت می کنند به همین دلیل به آنها نیمه هادی می گویند.
عمل جادویی که ترانزیستور می تواند انجام دهد اینست که می تواند مقدار هادی بودن خود را تغییر دهد . هنگامی که لازم است یک هادی باشد می تواند هدایت خوبی دشته باشد و هنگامی که لازم است تا به عنوان عایق عمل کند جریان بسیار کمی را از خود عبور می دهد که می توان آن را ناچیز شمرد.
نیمه هادی ها در مقابل الکتریسیته عملکرد جالبی دارند یک قطعه از یک عنصر نیمه هادی را بین دو قطع از یک عنصر نیمه هادی دیگر قرار دهید.جریان کم قطعه وسطی قادر است که جریان دو قطعه ی دیگر را کنترل کند. جریان کمی که از قطعه ی وسطی می گذرد برای مثال می تواند یک موج رادیوئی یا جریان خروجی از یک ترانزیستور دیگر باشد .حتی اگر جریان ورودی بسیار ضعیف هم باشد( مثلا یک سیگنال رادیوئی که مسافت زیادی را طی کرده و از رمق افتاده است!) ترانزیستور می تواند جریان قوی مدار دیگری را که به آن وصل است کنترل کند. به زبان ساده ترانزیستور رفتار جریان خروجی از روی رفتار جریان ورودی تقلید می کند.نتیجه می تواند یک سیگنال تقوت شده و پرتوان رادیوئی باشد.
ترانزیستور چه کاری انجام می دهد؟
در میکرو چیپ های امروزی ، که حاوی میلیونها ترانزیستور هستند که در الگو یا طرح مخصوصی چیده شده اند خروجی تقویت شده ی یک ترانزیستور به ورودی ترانزیستور دیگر داده می شود تاآن هم عمل تقویت کنندگی را بر روی ورودی انجام دهد و به همین ترتیب ادامه می یابد که نتیجه یک خروجی تقویت شده و پر توان می باشد . چنین میکروچیپی می تواند سیگنالی بسیار ضعیفی را از آنتن بگیرد و یک صوت قوی و چهار کاناله را تحویل دهد. با ساختن چیپ ها در طراحی های مختلف می توان تایمر هایی برای ساعت یا سنسور هایی برای نشان دادن درجه حرارت و یا کنترل کننده چرخ های ماشین تا قفل نشوند (سیستمABS) ساخت.می توان ترانزیستور ها را در آرایشی دیگر در داخل چیپ قرار داد(طراحی متفاوت) و پروسسور های منطقی و محاسباتی را ساخت که باعث می شوند تا ماشین حسابها محاسبه و کامپیوتر ها پردازش کنندو یا شبکه هایی را برای انتقال مکالمات تلفنی ساخت و یا سیستمهایی را ساخت که بتوانند صدا و تصویر را انتقال دهند.
می توان ترانزیستور ها را در بسته هایی چید که به آنها گیت های منطقی می گویند و می توانند دو عدد 1و 1 را باهم جمع کنند و یا می توان آنها را در آرایشی خاص قرار داد تا کارهای بسیار بزرگی را با استفاده از سرعت سوئیچینگ – 100 میلیون بار بر ثانیه و بیشتر – خود انجام دهند .
البته کار به همین جا ختم نمی شود مداراتی که در چندین سال گذشته برای انجام عملی خاص به وسیله ترانزیستور ها بر روی بورد ها بسته می شود امروزه به مدد طراحی کامپیوتری و تکنیک مدارات مجتمع بر روی یک آی سی هزاران ترانزیستور و سیم کشی های مربوطه و تمام قطعات الکترونیکی لازم قرار داده می شود . شاید بتوان گفت که حجم مدارات هزاران بار کاهش یافته است.
بر همین مقیاس امروزه می توان گفت که ترانزیستور مجانی است ( 1 دلار تقسیم بر یک میلیون ترانزیستور ) و ترانزیستور های داخل مدارات مجتمع واقعا قابل اطمینان هستند.
چیزی که باعث می شود که ترانزیستور ها روز به روز پیشرفت می کنند و بهتر و ارزان تر می شونداین است که به مدد تحقیقات نیمه هادی ها روز به روز بهتر و کاربردی تر می شوند . و این چیزی است که آزمایشگاههای بل برای آن تحقق می کند . دانشمندان این مرکز تحقیقاتی امروزه می دانند که چگونه نیمه هادی هار ا اتم به اتم به صورت مجازی ، از منابع سرشاری که مادر بی دریغ طبیعت در دسترس ما قرار داده است ، به وسیله تکنیک های لایه بندی بسازند.این چیزی است که می توان آن را جادو نامید.
بنابراین، ترانزیستور چیست؟
وسیله ی الکترونیکی شگفت انگیزی است که مجازا دیده نمی شود اما زندگی ما را کاملا و برای همیشه تغییر داده است.
اختراع رادیو
در سال 1895Guglilemo Marconi یک مهندس و مخترع ایتالیایی ، تکنولوژی جدیدی را که به وسیله نیکولا تسلا ابداع شده بود را بوسیله فرستادن سیگنال رادیویی فرا تر از یک مایل عملی ساخت بدین ترتیب ارتباطات بی سیم متولد شد اما موانع زیادی برای همه گیر شده این تکنولوژی وجود داشت.
مشکل آشکار سازی
اولین و مهمترین مشکل آشکار سازی بود.
امواج رادیویی که حامل اطلاعات بودند بایستی بدون سیم انتقال می یافتند اما مشکلی که وجود داشت این بودکه رسیور ها می بایست سیگنال حاوی اطلاعات را تشخیص می دادند.
کشف یک فیزیکدان آلمانی بانام Ferdinand Braun ابزاری برای حل این مسئله شد. Braun کشف کرده بود که شیشه می تواند جریان را در یک جهت آنهم در یک شرایط مشخص از خود عبور دهد.این مشاهده یکسو سازی نام نهاده شد.
Braun و دیگران این کشف را برای ساختن آشکار ساز در گیرنده های رادیویی به کار بردند. عملکرد یکسو سازی باعث می شود که کریستال موج حامل را از قسمت سیگنال حاوی اطلاعات تشخیص دهد.
تقویت
مجموعه های کریستالی فقط زمانی کار می کردند که موج رادیویی برای آشکار سازی به اندازه کافی قوی بود.اما امواج بر اثر فاصله ضعیف می شدند و توان خود را از دست می دادند.و حتی در صورتی که موج آشکار سازی هم می شد اپراتور فقط به وسیله headset قادر به شنیدن سیگنال پخش شده از دستگاه بود.
بنابراین برای اینکه ان تکنولوژی جدید ( ارتباط بی سیم ) کاربردی شود و با بلندی صدای خوبی نیز پخش شود نیاز به یک تقویت کننده بود.
لامپ های خلاء یکسو ساز
گام اول برای حل این مشکل توسطJohn Ambrose Fleming برداته شد.John یک فیزیکدان انگلیسی بود که برای بهبود دریافت سیگنالهای بیسیم تحقیق می کرد.
بر اساس تحقیقات او بر روی “اثر ادیسون” ( گرایش ذرات سیاه برای سیاه کردن سطح داخلی لامپ حبابی در نتیجه ی عبور جریان در یک جهت )، فلمینگ سیستم گیرنده ی رادیویی را با لامپ حبابی که دارای دو الکترود بود مجهز کرد.
در نتیجه ی این اصلاح لامپ حبابی ، الکترونها از کاتود به آنود جریان پیدا می کردند . به محض اینکه جریان از الکترود منفی به الکترود مثبت در داخل حباب جاری می شد،نوسان سیگنال ورودی در جهت جریان قابل آشکار شدن یکسو می گردید.
تقویت کنندگی لامپ خلاء
گام بعدی که در این زمینه برداشته شد اختراع یک آمریکایی با نام Lee De Forest بود این اختراع او یک نو آوری بود که در لامپ خلاء فلمینپ انجام داد. این نو آوری اضافه کردن الکترود سوم بود.این الکترود شبکه ای از سیمهای کوچک بود که که کاتود را احاطه کرده بودند.
پتانسیل منفی این الکترود ، جریان الکترود ها را از کاتود به آنود کنترل می کرد . با کاهش پتانسیل منفی الکترود میزان جاری شدن الکترون ها از داخل حباب افزایش می یافت به ان ترتیب یک تقویت کننده جریان ساخته شد.
ترانزیستور
علم الکترونیک با اختراع ترانزیستور وارد فاز جدیدی از تحقیق و اختراع شد .هر روز اخباری را مبنی بر اختراعات جدید در زمینه الکترونیک می شنویم که مطمئنا در کالبد شکافی این اختراعات به نقش پر اهمیت ترانزیستور پی خواهیم برد
علم الکترونیک با اختراع ترانزیستور وارد فاز جدیدی از تحقیق و اختراع شد .هر روز اخباری را مبنی بر اختراعات جدید در زمینه الکترونیک می شنویم که مطمئنا در کالبد شکافی این اختراعات به نقش پر اهمیت ترانزیستور پی خواهیم برد .
ترانزیستور یک قطعه سه پایه است که ساختار فیزیکی آن بر اساس عملکرد نیمه هادی ها می باشد.ترانزیستور را از دو نوع نیمه هادی با نام سلسیوم و ژرمانیوم می سازند.عموما در یک تقسیم بندی ترانزیستور ها را به دو دسته ترانزیستور های BJT و FET تقسیم می کنند . ترانزیستور های BJT با نام ترانزیستور های پیوند دو قطبی و ترانزیستور های FET با نام ترانزیستور های اثر میدان شناخته شدهاند.FETها دارای سرعت سوئیچینگ کمتر از BJT هستند .
معمولا ترانزیستور را با دو دیود مدل سازی می کنند از این مدل برای تشخیص سالم بودن ترانزیستور استفاده می کنند.عملکرد ترانزیستور هابه عنوان یک طبقه در مدار بستگی به نظر طراح دارد اما در صورتی که ترانزیستور را یک جعبه سیاه در نظر بگیریم که دارای دو ورودی و دو خروجی است با توجه به اینکه ترانزیستور دارای سه پایه است باید یکی از پایه ها را به عنوان پایه مشترک بین ورودی و خروجی در نظر بگیریم. این پایه مشترک اساس آرایش های مختلف ترانزیستور است .یکی از پایه های ترانزیستور با نام Base و پایه دیگر با نام امیتر (تزریق کننده) و پایه آخر با نام کالکتور (جمع کننده ) شناخته شده است . بسته به اینکه کدامیک از پایه های مذکور به عنوان پایه مشترک در نظر گرفته شود آرایش های بیس مشترکCommon Base – کالکتور مشترکCommon Collector- امیتر مشترک Common Emitter – ممکن خواهد بود.
هر کدام از این آرایش ها دارای یک خصوصیت خواهند بود که متفاوت با دیگر آرایش ها است مثلا امیتر مشترک دارای بهره توان بسیار زیاد است و یا بهره ولتاژ بیس مشترک زیاد است و…
ترانزیستور در هر مداری می تواند متفاوت از قبل ظاهر شود- منبع ولتاژ یا منبع جریان و یا تقویت کننده ولتاژ و ….- این تفاوت را المانهای همراه ترانزیستور که اکثرا مقاومت و خازن(دیود و…) هستند تعیین می کنند نحوه قرار گیری این المانها به همراه ترانزیستور و منبع تغذیه را بایاس ترانزیستور گویند.در مدار های بایاس برای ترانزیستور یک ولتاژ مثبت به همراه زمین یا یک ولتاژ مثبت به همراه ولتاژ منفی را برای ترانزیستور بسته به کاربرد در نظر می گیرند .
عملکرد ترانزیستور ها(BJT) در سه ناحیه تعریف می شود . 1-ناحیه قطع 2- ناحیه فعال 3- ناحیه اشباع
این سه ناحیه بر اساس بایاس پایه های ترانزیستور و ولتاژ آن ها تعریف می شود .
ترانزیستور در مدارات عمدتا به صورت زیر ظاهر می شود :
1- به عنوان کلید به منظور قطع و وصل قسمتی از مدار
از ترانزیستور در ناحیه قطع و اشباع به عنوان کلید دیجیتال و سوئیچ استفاده می کنند .ولتاژ VCE در حالت اشباع کمتر از 0.2 است . در حالت اشباع توان تلف شده ترانزیستور بسیار کم است زیرا توان تلف شده ترانزیستور از حاصلضرب ولتاژ VCE و IC بدست می آید که هردو مقدار کوچکی هستند.
2- به عنوان تقویت کننده ولتاژ
3- به عنوان تقویت کننده جریان
4- به عنوان منبع جریان ثابت
5- به عنوان منبع ولتاژ ثابت
و…
در 4 مورد بعدی بالا از ترانزیستور در ناحیه فعال که همان ناحیه خطی عملکرد ترانزیستور است استفاده می شود .
آرایش های مداری مشهور :
1- امیتر فالوور (Emitter follower) :
شکل موج خروجی دنبال کننده شکل موج ورودی است (وجه تسمیه) مقاومت کوچک موجود در بیس به منظور جلوگیری از نوسانات ناخواسته قرار گرفته است .
1- زوج دارلینگتون
هر ترانزیستور دارای یک خصوصیت با نام بتا β است که بهره جریان ترانزیستور است در زوج دارلینگتون بتای زوج ترانزیستور از ضرب 2β1*β حاصل می شود که مقداری نزدیک به چند هزار خواهد شد .البته در این آرایش ترانزیستور خروجی باید تحمل این جریان کالکتور را داشته باشد که مسئله مهمی در طراحی است.
1- منبع جریان ثابت
در این آرایش ولتاژ هر کدام از دیود ها 0.7 است و در نتیجه ولتاژ بیس ترانزیستور 1.4 خواهد شد ولتاژ VBE (ولتاژ بیس – امیتر) هم در حدود 0.7 است پس جریان عبوری از امیتر مقدار 0.7/RE خواهد بود با انتخاب مناسب RE می توان مقدار جریان را به دلخواه انتخاب کرد .
4 – منبع ولتاژ ثابت
در این مدار ولتاژ خروجی توسط دیود زنر تامین می شود .ولتاژ خروجی تقریبا 0.7 کمتر از ولتاژ شکست زنر است .
ترانزیستور دوقطبی پیوندی
ترانزیستور یک قطعه الکترونیکی فعال بوده و از ترکیب سه قطعه n و p بدست میآید که از ترزیق حاملین بار اقلیت در یک پیوند با گرایش مستقیم استفاده میکند و دارای سه پایه به نامهای بیس (B)، امیتر (E) و کلکتور (C) میباشد و چون در این قطعه اثر الکترونها و حفرهها هر دو مهم است، به آن یک ترانزیستور دوقطبی گفته میشود.
عصر نوین الکترونیک نیمه رساناها با اختراع ترانزیستور دوقطبی در ۱۹۴۸ توسط باردین، براتاین و شاکلی در آزمایشگاههای تلفن بل آغاز شد. این قطعه به همراه همتای اثر میدانی خود تأثیر شگفتی روی تقریباً تمام حوزههای زندگی نوین گذاشتهاست.
انواع ترانزیستور پیوندی
pnp
شامل سه لایه نیم هادی که دو لایه کناری از نوع p و لایه میانی از نوع n است و مزیت اصلی آن در تشریح عملکرد ترانزیستور این است که جهت جاری شدن حفرهها با جهت جریان یکی است.
npn
شامل سه لایه نیم هادی که دو لایه کناری از نوع n و لایه میانی از نوع p است. پس از درک ایدههای اساسی برای قطعه pnp میتوان به سادگی آنها را به ترانزیستور پرکاربردتر npn مربوط ساخت.
ساختمان ترانزیستور پیوندی
ترانزیستور دارای دو پیوندگاه است. یکی بین امیتر و بیس و دیگری بین بیس و کلکتور. به همین دلیل ترانزیستور شبیه دو دیود است. دیود سمت چپ را دیود بیس _ امیتر یا صرفاً دیود امیتر و دیود سمت راست را دیود کلکتور _ بیس یا دیود کلکتور مینامیم. میزان ناخالصی ناحیه وسط به مراتب کمتر از دو ناحیه جانبی است. این کاهش ناخالصی باعث کم شدن هدایت و بالعکس باعث زیاد شدن مقاومت این ناحیه میگردد.
امیتر که شدیدا آلائیده شده، نقش گسیل و یا تزریق الکترون به درون بیس را به عهده دارد. بیس بسیار نازک ساخته شده و آلایش آن ضعیف است و بنابراين بیشتر الکترونهای تزریق شده از امیتر را به کلکتور عبور میدهد. میزان آلایش کلکتور کمتر از میزان آلایش شدید امیتر و بیشتر از آلایش ضعیف بیس است و کلکتور الکترونها را از بیس جمعآوری میکند.
طرز کار ترانزیستور پیوندی
طرز کار ترانزیستور را با استفاده از نوع npn مورد بررسی قرار میدهیم. طرز کار pnp هم دقیقا مشابه npn خواهد بود، به شرط اینکه الکترونها و حفرهها با یکدیگر عوض شوند. در نوع npn به علت تغذیه مستقیم دیود امیتر ناحیه تهی کم عرض میشود، در نتیجه حاملهای اکثریت یعنی الکترونها از ماده n به ماده p هجوم میآورند. حال اگر دیود بیس _ کلکتور را به حالت معکوس تغذیه نمائیم، دیود کلکتور به علت بایاس معکوس عریضتر میشود.
الکترونهای جاری شده به ناحیه p در دو جهت جاری میشوند، بخشی از آنها از پیوندگاه کلکتور عبور کرده، به ناحیه کلکتور میرسند و تعدادی از آنها با حفرههای بیس بازترکیب شده و به عنوان الکترونهای ظرفیت به سوی پایه خارجی بیس روانه میشوند، این مولفه بسیار کوچک است.
نحوه اتصال ترازیستورها
اتصال بیس مشترک
در این اتصال پایه بیس بین هر دو بخش ورودی و خروجی مدار مشترک است. جهتهای انتخابی برای جریان شاخهها جهت قراردادی جریان در همان جهت حفرهها میشود.
اتصال امیتر مشترک
مدار امیتر مشترک بیشتر از سایر روشها در مدارهای الکترونیکی کاربرد دارد و مداری است که در آن امیتر بین بیس و کلکتور مشترک است. این مدار دارای امپدانس ورودی کم بوده، ولی امپدانس خروجی مدار بالا میباشد.
اتصال کلکتور مشترک
اتصال کلکتور مشترک برای تطبیق امپدانس در مدار بکار میرود، زیرا برعکس حالت قبلی دارای امپدانس ورودی زیاد و امپدانس خروجی پائین است. اتصال کلکتور مشترک غالبا به همراه مقاومتی بین امیتر و زمین به نام مقاومت بار بسته میشود.
ترانزیستور ها چطورکارمی کنند ؟
ریزپردازنده ها به صورت یک جزء لاینفک در بسیاری از محصولاتی که ما هرروزه از آن ها استفاده می کنیم در آمده اند ، مانند تلویزیون ، اسباب بازی ها ، رادیو ، و البته کامپیوترها . ولی این ترانزیستورها هستند که اجزای اصلی ریزپردازنده ها را تشکیل می دهند .
در پایین ترین سطح خود ، ممکن است ترانزیستورها به نظر ساده برسند . اما تولید آن ها عملاً به سال های سال تحقیقات کشنده نیاز داشته است. تا پیش از ترانزیستورها ، کامپیوترها به لامپ های خلاء و کلید های مکانیکی متکی بودند. در سال 1958 تعدادی مهندس ( که یکی از آن ها به نام رابرت نویس ، بعداً پایه گذار شرکت اینتل شد ) دست به دست هم دادند تا 2 ترانزیستور را روی یک قطعه بلور سیلیکون بکارند و اولین مدار مجتمع را بسازند؛ چیزی که به ساخت ریزپردازنده منجر شد .
ترانزیستورها در واقع کلیدهای قطع و وصلِ برق در ابعاد مینیاتوری هستند . اگر ریزپردازنده را یک «ساختمان» در نظر بگیرید ، ترانزیستورها، حکم آجری را دارند که برای بنای این ساختمان باید روی هم گذاشته شوند.
درست همانند یک کلید ساده ی چراغ ، ترانزیستورها در دوحالت کار می کنند: حالت وصل، و حالت قطع. این حالت قطع یا وصل ، یا خاموش و روشنِ ترانزیستورهاست که امکان پردازش اطلاعات را فراهم می سازد .
- یک کلید ساده ی برقی چطور کارمی کند ؟
تنها چیزی که کامپیوترها از آن سردر می آورند ، سیگنال های الکتریکی است که قطع و وصل می شوند . برای درکِ بهتر ترانزیستورها ، لازم است بفهمید که یک مدار قطع و وصل الکترونیکی چه طور کار می کند . مدارات قطع و وصل الکترونیکی از اجزای مختلفی تشکیل می شود. یکی ، مسیر جریان است که جریانِ الکتریکی عموماً از طریق یک سیم در آن گردش می کند.
دیگری ، خودِ کلید یا سویچ است ؛ وسیله ای که گردش جریان الکتریکی را شروع و متوقف می کند، آن هم یا با بازگذاشتن مسیر جریان یا مسدود کردن آن. ترانزیستورها هیچ قطعه ی متحرکی ندارند و تنها با علایم الکتریکی قطع و وصل می شوند. قطع و وصل شدنِ ترانزیستورها ، کار ریزپردازنده ها را میسر می سازد .
- ترانزیستور چطور از عهده ی اطلاعات برمی آید ؟
شمارنده ی باینری چیزی است که فقط دارای دو حالت است ، درست مانند ترانزیستور. حالت «وصل» ترانزیستور را با 1 نشان می دهند و حالت قطع آن را با 0 . ردیف های مشخصی از الگوی 1ها و 0هایی که به وسیله ی ترانزیستورهای متعدد تولید می شوند ، می توانند نشان دهنده ی حروف ، اعداد ، رنگ ها ، و خطوط باشند. به این می گویند دستگاه باینری.
( دستگاه باینری ، یک روش شمارش است که فقط از دو رقم 0 و 1 تشکیل شده است و تمام اعداد فقط با این دو رقم نمایش داده می شوند .)
- اسم خود را برحسب باینری هجی کنید
هر حرف الفبا یک معادل باینری دارد . در سمت چپ اسم JOHN و معادل باینری آن را می بینید. اطلاعات پیچیده تری را نیز می توان با حالت قطع و وصل یا حالتِ باینری ترانزیستور ها تولید نمود؛ مانند گرافیک ، صوت ، و ویدیو .
- نیمه هادی ها و جریان الکتریسته
با اضافه کردن چند نوع ناخالصی معین به سیلیکون یک ترانزیستور، ساختار بلورین آن تغییر می کند، و خاصیت هدایت الکتریسته ی آن بهتر می شود . اگر به سیلیکون، فلز بور اضافه کنید، سیلیکونِ مثبت یا نوعِ P (P مخفف Positive ) تولید می شود که فاقدِ الکترون است . اگر به سیلیکون، فلز فسفر اضافه نمایند ، سیلیکونِ منفی یا نوع N ( N مخفف Negative ) به دست می آید که شامل تعداد بسیار زیادی الکترون آزاد است.
- حالت های قطع و وصل یک ترانزیستور
الف) رانزیستورها از سه پایانه تشکیل می شوند : منبع ، گیت ، مخرج .
ب) در ترانزیستور نوع منفی ، هم منبع و هم مخرج بار منفی دارند و روی توده ای از سیلیکون نوع مثبت را گرفته اند .
ج ) هنگامی که ولتاژ مثبت به گیت وارد می شود ، الکترون های موجود در سیلیکون نوع مثبت ، جذبِ منطقه ی زیرینِ گیت می شوند ، و یک کانال الکترونیکی بین منبع و مخرج را شکل می دهند .
د) هنگامی که ولتاژ مثبت به مخرج وارد می شود ، الکترون ها از منبع جدا شده و به سمت مخرج می روند. در این حالت ، ترانزیستور ، وصل است.
ه) اگر ولتاژ از روی گیت برداشته شود ، الکترون ها جذبِ منطقه ی واقع بین منبع و مخرج نمی گردند . مسیر جریان از بین می رود ، و ترانزیستور به حالت قطع در می آید.
- ریزپردازنده ها چطور بر زندگی ما تاثیر می گذارند
کارکردِ باینری ترانزیستورها به پردازنده ها این قابلیت را می دهد که ماموریت های بسیاری را انجام دهند، از یک نامه نگاری ساده تا ویرایش فایل های ویدیویی. ریزپردازنده ها به نقطه ای رسیده اند که ترانزیستورها می توانند صدها میلیون دستورالعمل در ثانیه را روی یک تراشه ی واحد به اجرا در آورند . اتومبیل ها ، تجهیزات پزشکی ، تلویزیون ها ،کامپیوترها ، و حتا سفاین فضایی از ریزپردازنده ها استفاده می کنند. همه ی آن ها متکی به گردش اطلاعات باینری هستند که به یمنِ وجودِ ترانزیستور ممکن گشته است
ساختار و طرز کار ترانزیستور اثر میدانی – فت
در مقالات گذشته در مورد نیمه هادی ها و انواع دیود و ترانزیستور مطالبی گفته شد. در ادامه نیاز است که کمی در مورد ترانزیساورهای اثر میدانی یا فِت ها ( FET ) توضیح دهیم.
همانگونه که از نام این المام مشخص است، پایه کنترلی آن جریانی مصرف نمی کند و تنها با اعامل ولتاژ و ایجاد میدان درون نیمه هادی ، جریان عبوری از FET کنترل می شود. به همین دلیل ورودی این مدار هیچ کونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی گذارد و امپدانس بسیار بالایی دارد.
فت دارای سه پایه با نهامهای درِین D – سورس S و گیت G است که پایه گیت ، جریان عبوری از درین به سورس را کنترل می نماید. فت ها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور می کند . FET ها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک می گردند. به همین دلیل نسبت به نویز بسیار حساس هستند.
نوع دیگر ترانزیستورهای اثر میدانی MOSFET ها هستند ( ترانزیستور اثر میدانی اکسید فلزی نیمه هادی – Metal-Oxide Semiconductor Field Efect Transistor ) یکی از اساسی ترین مزیت های ماسفت ها نویز کمتر آنها در مدار است.
فت ها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر ، نخست پایه گیت را پیدا می کنیم. یعنی پایه ای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق می توان پایه درین را از سورس تشخیص داد.
منابع :
1- سایت اطلاع رسانی ایران مدار:
www.iranmedar.com
2- سایت اطلاع رسانی آفتاب :
www.aftab.ir
3- سایت اطلاع رسانی دانشنامه رشد :
www.daneshnameh.roshd.ir
4- سایت اطلاع رسانی تبیان :
www.tebyan.net